

Material Characterization for Processing: Hexcel 8552

Material Model Development Final Project Wrap-Up

Prepared by: A. Shahkarami Reviewed by: D. Van Ee Approved: A.Poursartip Date: November 15th, 2009 Version: 1.0

Project Definition

Material: Hexcel 8552

Modeling performed for:

- Cure Kinetics
- Heat Capacity (Cp)
- Viscosity

Material Description

• HEXPLY 8552

- Material forms received from Hexcel are as follows:
 - Neat Resin: HS-AD-693 (received Oct 18, 2006)
 - Resin Film: 74#CCA1030/B430, 35G, 45.75 (received Oct 18, 2006)

Cure Kinetics Model

4

Nomenclature

Iso			
Int			
Dyn			
RES			

HR Definition

DSC Test Procedure

Isothermal Tests

In isothermal tests, the sample is equilibrated at a very low temperature and then heated up to a predefined hold temperature at a very high rate. The sample is held at this temperature for a predetermined duration of time (i.e. until the reaction stops due to diffusion or full cure in the case of conditioned isothermal tests, or earlier as predefined for interrupted isothermal tests). The sample is then cooled down, followed by a residual ramp at a known rate (typically 1-4 cpm). The residual ramp ensures that the material is fully cured, and provides the material Tg at the end of hold, as well as the residual heat of reaction. A second ramp is also performed to determine the final (full cure) Tg.

Dynamic Tests

In dynamic tests, the sample is equili

DSC Tests Performed

The DSC tests were performed are summarized below:

- Dynamic tests: 18 tests @ 1 to 10°Cpm
- Isothermal tests: 11 tests 100°C to 190°C
- Interrupted Isothermal tests: 2 tests at 160°C
- Other: 4 cure cycle tests, 4 dynamic on other forms

After careful examination of the results and investigation of the consistency of the data, the comp

DSC Tests Used in Model Fitting

Tost	Mass	Rate	Temp _{max}
Test	(mg)	(ºC/min)	(°C)
8552-MDYN-01cpm-01	4.99	1	300
8552-MDYN-02cpm-01	4.19	2	300
8552-MDYN-02cpm-02	5.3	2	280
8552-MDYN-03cpm-01	5.59	3	300
8552-MDYN-04cpm-01	5.59	4	300
8552-MDYN-05cpm-01	4.79	5	300
8552-MDYN-06cpm-01	4.79	6	300
8552-MDYN-07cpm-01	5.89	7	300
8552-MDYN-08cpm-01	4.09	8	330
8552-MDYN-09cpm-01	5.19	9	330
8552-MDYN-10cpm-01	3.39	10	330

Mass (mg)

Degree of Cure Calculation

Raw DSC data was linearly sparsed and smoothed.

A bi-linear baseline was considered for dynamic tests in order to calculate the total heat of reaction and degree of cure. Baselines fitted to

Cure Rate vs. DoC – Dyns

Cure Rate vs. DoC – Isos

Heat Flow Response – 1cpm

DoC and Cure Rate – 1cpm

Heat Flow Response – 2cpm-1

DoC and Cure Rate – 2cpm-1

Heat Flow Response – 3cpm

DoC and Cure Rate – 3cpm

DoC and Cure Rate – 4cpm

Heat Flow Response – 5cpm

DoC and Cure Rate – 5cpm

Heat Flow Response – 6cpm

27

Heat Flow Response – 7cpm

29

Heat Flow Response – 9cpm

DoC and Cure Rate – 9cpm

34

DoC and Cure Rate – 10cpm

Heat Flow Response – 120°C

Heat Flow Response – 140°C

DoC and Cure Rate – 140°C

Heat Flow Response – 150°C

Heat Flow Response – 160°C

DoC and Cure Rate – 160°C

DoC and Cure Rate – 180°C-2

DoC and Cure Rate – 190°C

Total Heat of Reaction - Dyns

Total Heat of Reaction - Isos

Cure Kinetics Model

1

Chemical Reaction:

k 2

where

Cure Kinetics Model

Diffusion Component:

$$\dot{x}_{d} = K_{d0} e^{\frac{-B}{f}} F_{d}(x) \qquad \longrightarrow \qquad \dot{x}_{d} = 4.0 \times e^{\frac{-0.21}{f}}$$

where¹ $f = a(T - T_g) + b$

with
$$a = 4.8 \times 10^{-4}$$

and
$$0.021$$
 $T_g < 120^{\circ}C$
 $b = \text{Linear bw } 0.021 \text{ and } 0.031$ $120^{\circ}C < T_g < 195^{\circ}C$
 0.031 $T_g > 195^{\circ}C$

Cure Kinetics Model

$$\dot{x} = \frac{1}{\dot{x}_k} + \frac{1}{\dot{x}_d}^{-1}$$

Ln(xdot)-1/T

Model-Kinetic4

Ln(xdot)-1/T

Model Parameters

Parameter	Reaction 1	Reaction 2
(1/s)	153,900.5	3.963E+11
(J/mol)	64,929.5	133,168.3
	2.347	1.029
	1.00	1.00
	0.00	0.00
	1.00	1.00
	0.1594	0.00
	1.413	5.586

Parameter	Value (unit)
	-7 (°C)
	250 (°C)
	0.78

Parameter	Value (unit)
	4.0 (1/s)
	0.21
	4.8E-04 (1/ºC)
	4.8E-04 (1/ºC)
	0 (°C)
	100 (°C)
	0.021
	0.031
	120 (°C)
	195 (ºC)

Dynamic Tests – 1cpm

Dynamic Tests – 2cpm-2

Dynamic Tests – 3cpm

Dynamic Tests – 4cpm

Dynamic Tests – 8cpm

Dynamic Tests – 9cpm

Isothermal Tests - 100°C

Isothermal Tests - 120°C

Isothermal Tests - 130°C

Isothermal Tests - 140°C

Isothermal Tests - 150°C

Isothermal Tests - 170°C

Isothermal Tests - 180°C-1

Isothermal Tests - 180°C-2

Isothermal Tests - 190°C

Isothermal Tests – All

Post-Hold Tg

Post-Hold Tg

Tg values at various points along the MRCC were measured and then compared to the predictions of the cure kinetics model. Good agreement was observed.

Goodness of Fit - Overview

 Goodness of fit is measured by comparing the test to the model prediction at several key points in the

Goodness of Fit – Peak

120

Goodness of Fit – Other

Goodnes s of Fit – Iso DOC

Goodness of Fit – Dyn Timing

Goodness of Fit – Dyn DOC

Other Forms - Fabric

Other Forms - Fabric

130

Other Forms – HR Values

Material Model Verification – 100C

Material Model Verification – 1Cpm

	 		1		
1		l.	I		
1		I	I		
			I		
			1		
			I		
1		l.	l.		
			' 	, 	
		l.	I		
1		l.	l.		
			•	+	+
		l.	I		
		I	I		
I		I	I.		
		l.	l.		

1°C/min

140

3°C/min

14Z

4°C/min

5°C/min

144
HEXPLY 8552 – Version 1.0

Viscosity Model

Nomenclature

- η' Dynamic viscosity or the real part of the complex viscosity
- η'' Elastic complex part of the complex viscosity
- η^* Complex viscosity
- μ Material viscosity calculated by the viscosity model

Viscosity Tests

- Material viscosity was measured using an AR2000 Rheometer with parallel plate geometry.
- Dynamic tests at different ramp rates were performed to capture the changes in material viscosity as a function of temperature and degree of cure. A total of 8 tests at 1, 2, 3, and 4 C/min (two at each rate) were performed.
- Disposable aluminum plates of diameter 25mm were used at a gap of 1mm (sample thickness). Frequency of oscillation was chosen to be 1Hz.

Viscosity Measure

Rheometry tests are performed under sinusoidal oscillatory loads. The classical solution of the viscoelastic behaviour of materials in such circumstances is usually expressed in terms of storage and loss moduli. Considering the following strain function, the resulting stress would be:

Strain applied: $\gamma = \gamma_0 \sin \omega t$ Resulting stress: $\sigma = \sigma_0 \sin(\omega t + \delta)$

where δ is the phase angle between the strain and the stress. Decomposing the stress into in-phase and out-of-phase components, we get:

$$\sigma = \gamma_0 (G' \sin \omega t + G'' \cos \omega t)$$

where G' is the in-phase (elastic or storage) modulus and G'' is the out-ofphase (viscous or loss) modulus.

Viscosity Measure

Alternatively, a complex viscosity $\eta^* {\rm can}$ be defined with "dynamic viscosity" (η

Raw Data

Mathematical Model

The viscosity model chosen is in the following form¹:

$$\mu = \mu_1(T) + \mu_2(T) \frac{x_g}{x_g - x}$$
 (A+Bx+Cx²)

where

$$\mu_i(T) = \mu_{0i} e^{\frac{E_i}{RT}} \qquad ior 2$$

¹Khoun and Hubert, Processing Characterization of a RTM Carbon Epoxy System for Aeronautical Applications.

Mathematical Model

The parameters of the viscosity model are determined by fitting to the experimental results.

 $E_1 = 81,908$

Dynamic Tests – 1cpm-1

Dynamic Tests – 3cpm-2

Dynamic Tests – 4cpm-2

HEXPLY 8552 – Version 1.0

Resin Viscosity

Heat Capacity (Cp) Model

Nomenclature

Cp Heat Capacity (J/gC)

Cp Measurement

• The DSC tests were temperature modulated to obtain

Raw Data

Cp Model Basics

Cp Model

The parameters of the Cp model are determined by fitting to the experimental results. The model is formulated as shown below:

$$C_{p_{ij}} = s_{ij}T + c_{ij} \quad (i = r, g \text{ and } j = 0, \infty)$$

$$(=) + \sum_{\infty} C_{p_g} - C_{p_r}$$

$$C_{p} = C_{p_{r}} + \frac{1}{1 + e^{k[(T - T_{g}) - \Delta T_{c}]}}$$

<u>Glassy</u>

Rubbery

Other parameters

k = 0.278

 $\Delta T_c = -1.5$

Valid for temperature values between -70°C to 275°C.

172

 $s_{g0} = 0.003775$

Dynamic Tests – 2cpm-2

Dynamic Tests – 3cpm

Dynamic Tests – 5cpm

		+			
	l i i i i i i i i i i i i i i i i i i i				
	·				
	1				
		1			
•					
•					
		1			

Dynamic Tests – 6cpm

Dynamic Tests – 8cpm

Dynamic Tests – 9cpm

	 r			
			1	

Dynamic Tests – 10cpm

		+		
I I I I I I I I I I I I I I I I I I I				
I I I I I I I I I I I I I I I I I I I				
I I I I I I I I I I I I I I I I I I I				
1				

Isothermal Tests – 100C

Isothermal Tests – 110C

Isothermal Tests – 120C

Ism0.0006 Tc55/WSrmal Tests -

Isothermal Tests – 180C-1

-					
					I I
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			E E
					E E
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			E E
-					r
					I I
					I I
					E E
_					
		and the second			E E
		1			E E
		le de la constante de la const			E E
		le de la companya de			l I
					I I
					E E
-				+	+
_					
	1				
					l I
					I. I.
					L L L
					L L
_	1				

Isothermal Tests – 180C-2

Dynamic Tests – 1Cpm

Dynamic Tests – 1Cpm

Dynamic Tests – 2Cpm-1

Dynamic Tests – 3Cpm

201

Dynamic Tests – 4Cpm0.00.51.0

204

Dynamic Tests – 9Cpm

Dynamic Tests – 9Cpm

Dynamic Tests – 10Cpm

Isothermal Tests – 110C

Isothermal Tests – 120C

Isothermal Tests – 130C

Isothermal Tests – 140C

Isothermal Tests – 150C

Isothermal Tests – 160C

Isothermal Tests – 170C

Etalermal Tests - 180C-1012015

Isothermal Tests – 180C-1

Isothermal Tests – 190C

Material Model Verification – 100C

			' 		
_					
_					
_					

Material Model Verification – 1Cpm

_					L
-	i			 · ·	
_					
_					

