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Outline

* Application driver: Privacy-Preserving Machine Learning
« Algorithmic case study: dense matrix multiplication
« Software overview: Cicada-mpc (Fault-tolerant, open-source)

nttps://github.com/cicada-mpc/cicada-mpc/
nttps://cicada-mpc.readthedocs.io/

nttps:.//www.youtube.com/watch?v=GM JuKrw4lk
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Motivation: MPC Linear Regression & Gradient Descent

Gradient descent:
Model: vector !

Goal: Minimize a loss function ™



Local Gradient Matrices



Typical MPC Computation: Resharing Matrices

Reshare to form matrices that don't individually reveal gradient information.
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MMULT(A4, B)

For each player !:
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MMULT Example: 9 Players
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Global impact of MMULT:
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Tolerating Fail-Stop Faults

ldea.
« Checkpoint row and column aggregated values.
« Use Cicada’s built-in fault tolerance and Python exception handling
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Based on three fundamental concepts

Communicators

Network abstraction representing an unchanging group of players, and
communication patterns to pass messages among them.

Encodings

Map between domain values and MPC-friendly integer field
representations.

Protocol Suites

Use communicators and encodings to implement curated collections of
privacy-preserving protocols: secret sharing, addition, multiplication, logical
comparison, etc.



Communication Patterns
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Encoding Fixed Point Arithmetic into a Field
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Encodings

import numpy

from cicada.additive import AdditiveProtocolSuite
from cicada.communicator import SocketCommunicator
from cicada.encoding import Boolean

from cicada.interactive Import secret input

with SocketCommunicator.connect(startup_timeout=300) as communicator:
protocol = AdditiveProtocolSuite(communicator)

winner = None
winning_share = protocol .share(src=0, secret=numpy.array(0), shape=())

for rank in communicator.ranks:
prompt = f"'Player {communicator.rank} fortune:
fortune = secret_input(communicator=communicator, src=rank, prompt=prompt)
fortune_share = protocol.share(src=rank, secret=fortune, shape=())
less share = protocol.less(fortune_share, winning_share)
less = protocol.reveal(less_share, encoding=Boolean())
1T not less:
winner = rank
winning_share = fortune_share

print(f"Winner: player {winner}'")
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Protocol Suites

rt numpy

cicada.additive import AdditiveProtocolSuite
cicada.communicator import SocketCommunicator
cicada.encoding import Boolean
cicada.interactive 1mport secret input
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winner = None
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for rank in communicator.ranks:
prompt = f"Player {communicator.rank} fortune:
fortune = secret_input(communicator=communicator, src=rank, prompt=prompt)
fortune_share = protocol.share(src=rank, secret=fortune, shape=())
less share = protocol.less(fortune_share, winning_share)
less = protocol.reveal(less_share, encoding=Boolean())
1T not less:
winner = rank
winning_share = fortune_share

print(f"Winner: player {winner}')



hostA $ cicada start --rank O millionalres.py

Player O fortune: 1230000
INFO:root:Winner: player 1

hostB $ cicada start --rank 1 millionalres.py

Player 1 fortune: 4560000
INFO:root:Winner: player 1

hostC $ cicada start --rank 2 millionalres.py

Player 2 fortune: 3400000
INFO:root:Winner: player 1



Fault Tolerance

Cicada is the only MPC library we’re aware of with support for fault tolerance and recovery!

All communication patterns have explicit, finite timeouts ...
... so failures cannot go unnoticed.
Communicators raise exceptions when failures occur ...

... this is the part where other MPC tools just die.
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MPC Through 100 Players!
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Conclusions, HPC Community Asks

“WHY DIDN'T WE USE MPI and USER-LEVEL FAULT MITIGATION (ULFM)?”
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