Cicada: Player-Scalable, Fault-Tolerant Secure
MultiParty Computation

4% High-Performance Computing Security Workshop

Jon Berry, May, 2024

Project Team:
J. Berry (PI), G. Birch, K. Dixon (PM), A. Ganti, K. Goss, C. Mayer, U. Onunkwo, C. Phillips, J. Saia (UNM), T. Shead

This work was s pp dbyh Laboratory Directed R: rch al d Ip nt program at Sandia n tories, a multi Ib ym gd and o p dby nal Technology and Engineering
ions of Sandia LLC, a wholly owne: d ubsidial ry f yw ell In I c. for h S Department of ' i Nuce under contra NAO 352

Thanks to Our Multi-Disciplinary Research Team

Cicada-mpc
main author

May 20, 2024

Outline

* Application driver: Privacy-Preserving Machine Learning
« Algorithmic case study: dense matrix multiplication
« Software overview: Cicada-mpc (Fault-tolerant, open-source)

nttps://github.com/cicada-mpc/cicada-mpc/
nttps://cicada-mpc.readthedocs.io/

nttps:.//www.youtube.com/watch?v=GM JuKrw4lk

May 20, 2024

https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/

Motivation: MPC Linear Regression & Gradient Descent

Gradient descent:
Model: vector !

Goal: Minimize a loss function ™

Local Gradient Matrices

Typical MPC Computation: Resharing Matrices

Reshare to form matrices that don't individually reveal gradient information.

5
Private O A |:|
Random /\ Q O A

Received O O /\ /\

New matrix:

Private

MMULT(A4, B)

For each player !:
1. " #< AGGREGATE("",§%,). # sum shares along columns

2. &t AGGREGATE(&, ™,

MMULT Example: 9 Players

3
6

9

Global impact of MMULT:

May 20, 2024

Tolerating Fail-Stop Faults

ldea.
« Checkpoint row and column aggregated values.
« Use Cicada’s built-in fault tolerance and Python exception handling

May 20, 2024

| 10

https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/en/latest/

Based on three fundamental concepts

Communicators

Network abstraction representing an unchanging group of players, and
communication patterns to pass messages among them.

Encodings

Map between domain values and MPC-friendly integer field
representations.

Protocol Suites

Use communicators and encodings to implement curated collections of
privacy-preserving protocols: secret sharing, addition, multiplication, logical
comparison, etc.

Communication Patterns

Based on three fundamental concepts:

Communicators

Network abstraction representing an unchanging group of players, and
communication patterns to pass messages among them.

Encodings

Map between domain values and MPC-friendly integer field
representations.

Protocol Suites

Use communicators and encodings to implement curated collections of
privacy-preserving protocols: secret sharing, addition, multiplication, logical
comparison, etc.

Encoding Fixed Point Arithmetic into a Field

0

May 20, 2024

Encodings

import numpy

from cicada.additive import AdditiveProtocolSuite
from cicada.communicator import SocketCommunicator
from cicada.encoding import Boolean

from cicada.interactive Import secret input

with SocketCommunicator.connect(startup_timeout=300) as communicator:
protocol = AdditiveProtocolSuite(communicator)

winner = None
winning_share = protocol .share(src=0, secret=numpy.array(0), shape=())

for rank in communicator.ranks:
prompt = f"'Player {communicator.rank} fortune:
fortune = secret_input(communicator=communicator, src=rank, prompt=prompt)
fortune_share = protocol.share(src=rank, secret=fortune, shape=())
less share = protocol.less(fortune_share, winning_share)
less = protocol.reveal(less_share, encoding=Boolean())
1T not less:
winner = rank
winning_share = fortune_share

print(f"Winner: player {winner}'")

Impo

from
from
from
from

with

Protocol Suites

rt numpy

cicada.additive import AdditiveProtocolSuite
cicada.communicator import SocketCommunicator
cicada.encoding import Boolean
cicada.interactive 1mport secret input

SocketCommunicator.connect(startup_ timeout=300) as communicator:
protocol = AdditiveProtocolSuite(communicator)

winner = None
winning_share = protocol .share(src=0, secret=numpy.array(0), shape=())

for rank in communicator.ranks:
prompt = f"Player {communicator.rank} fortune:
fortune = secret_input(communicator=communicator, src=rank, prompt=prompt)
fortune_share = protocol.share(src=rank, secret=fortune, shape=())
less share = protocol.less(fortune_share, winning_share)
less = protocol.reveal(less_share, encoding=Boolean())
1T not less:
winner = rank
winning_share = fortune_share

print(f"Winner: player {winner}')

hostA $ cicada start --rank O millionalres.py

Player O fortune: 1230000
INFO:root:Winner: player 1

hostB $ cicada start --rank 1 millionalres.py

Player 1 fortune: 4560000
INFO:root:Winner: player 1

hostC $ cicada start --rank 2 millionalres.py

Player 2 fortune: 3400000
INFO:root:Winner: player 1

Fault Tolerance

Cicada is the only MPC library we’re aware of with support for fault tolerance and recovery!

All communication patterns have explicit, finite timeouts ...
... so failures cannot go unnoticed.
Communicators raise exceptions when failures occur ...

... this is the part where other MPC tools just die.

1

Tad

-
"

flow

2w w

7 Foaatiirace naccad _ O_Ffa

MPC Through 100 Players!

May 20, 2024

Conclusions, HPC Community Asks

“WHY DIDN'T WE USE MPI and USER-LEVEL FAULT MITIGATION (ULFM)?”

HSBIES “#(h") *+h , BiP-".7 70914234 SHHP6S#S 78S = ;.5 2 $70709* 7 (M 74S<=>724" 71}

@;$75<4 BSHLSTORSLY;#*C.$ = (H(/8™4" (0

o >% = = /798N 0%HES-*8T 0P T , " (TEOILSO0SB0SLICEL" . " TF(HLS; $7L97)*Th
£ 7F (17909 05 140" SHS-*8 " 09 7

o G o $I8*. $800-SH* ; G007 (KLOLHT <Ok " 9(SH0D = $*/ONBaF#(IS-$ 74 , " STH(* =
B TF(, HILS" 1A

o H$8"/($12345H" " (TEHCSS7H" 1% 051 c& SR TH S5 BOT1AT) (¢

L*TEON(/ 5 3 <HOI234 54 714, *#FI7)h, 90™"h; "08"'$14CI7197) (H($-$45.84.9 = 0(4* /4
" CO.90840%H19(0RIC /0B /#1 (%60 , " #$h

May 20, 2024

98"

28

jberry@sandia.gov

LT A, R R T

