
This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering 
Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Cicada: Player-Scalable, Fault-Tolerant Secure 
MultiParty Computation
4th High-Performance Computing Security Workshop

Project Team: 

J. Berry (PI), G. Birch, K. Dixon (PM), A. Ganti, K. Goss, C. Mayer, U. Onunkwo, C. Phillips, J. Saia (UNM), T. Shead

Jon Berry, May, 2024



Thanks to Our Multi-Disciplinary Research Team

May 20, 2024 2

Cicada-mpc
main author



Outline

• Application driver: Privacy-Preserving Machine Learning

• Algorithmic case study: dense matrix multiplication

• Software overview: Cicada-mpc  (Fault-tolerant, open-source)

https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/
https://www.youtube.com/watch?v=GM_JuKrw4Ik

May 20, 2024 3

https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/




Motivation: MPC Linear Regression & Gradient Descent

Gradient descent:

Model: vector 𝜷.

Goal: Minimize a loss function 𝑳



Local Gradient Matrices



Typical MPC Computation: Resharing Matrices

Reshare to form matrices that don’t individually reveal gradient information.

7

1 2 3

Private

Random

Received

New matrix:

Private 



MMULT(𝐴, 𝐵)

For each player 𝑝: 

1.  𝐴𝑝′ ← AGGREGATE(𝐴!, 𝐶!).     # sum shares along columns

2.  𝐵!′ ← AGGREGATE(𝐵!, ℛ!



MMULT Example: 9 Players

May 20, 2024 9

Global impact of MMULT:

1 2 3
4 5 6
7 8 9



Tolerating Fail-Stop Faults

May 20, 2024 10

Idea: 
• Checkpoint row and column aggregated values.
• Use Cicada’s built-in fault tolerance and Python exception handling

1 2 4

5 7 8

9 11 12

13 14 15 16





https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/en/latest/




Based on three fundamental concepts

Communicators
Network abstraction representing an unchanging group of players, and  
communication patterns to pass messages among them.

Encodings
Map between domain values and MPC-friendly integer field 
representations.

Protocol Suites
Use communicators and encodings to implement curated collections of 
privacy-preserving protocols: secret sharing, addition, multiplication, logical 
comparison, etc.



Communication Patterns



Based on three fundamental concepts:

Communicators
Network abstraction representing an unchanging group of players, and  
communication patterns to pass messages among them.

Encodings
Map between domain values and MPC-friendly integer field 
representations.

Protocol Suites
Use communicators and encodings to implement curated collections of 
privacy-preserving protocols: secret sharing, addition, multiplication, logical 
comparison, etc.



Encoding Fixed Point Arithmetic into a Field

May 20, 2024 17

0

1

2

3-3=4

-2=5

-1=61

=

6

-

1

=

6





import numpy



i m p o r t  n u m p yf r o m  c i c a d a . a d d i t i v e  i m p o r t  A d d i t i v e P r o t o c o l S u i t ef r o m  c i c a d a . c o m m u n i c a t o r  i m p o r t  S o c k e t C o m m u n i c a t o rf r o m  c i c a d a . e n c o d i n g  i m p o r t  B o o l e a n



import numpy

from cicada.additive import AdditiveProtocolSuite
from cicada.communicator import SocketCommunicator
from cicada.encoding import Boolean
from cicada.interactive import secret_input

with SocketCommunicator.connect(startup_timeout=300) as communicator:
  protocol = AdditiveProtocolSuite(communicator)

  winner = None
  winning_share = protocol.share(src=0, secret=numpy.array(0), shape=())

  for rank in communicator.ranks:
        prompt = f"Player {communicator.rank} fortune: "
    fortune = secret_input(communicator=communicator, src=rank, prompt=prompt)
    fortune_share = protocol.share(src=rank, secret=fortune, shape=())
    less_share = protocol.less(fortune_share, winning_share)
    less = protocol.reveal(less_share, encoding=Boolean())
    if not less:
      winner = rank
      winning_share = fortune_share

    print(f"Winner: player {winner}")

Encodings



import numpy

from cicada.additive import AdditiveProtocolSuite
from cicada.communicator import SocketCommunicator
from cicada.encoding import Boolean
from cicada.interactive import secret_input

with SocketCommunicator.connect(startup_timeout=300) as communicator:
 protocol = AdditiveProtocolSuite(communicator)

  winner = None
  winning_share = protocol.share(src=0, secret=numpy.array(0), shape=())

  for rank in communicator.ranks:
        prompt = f"Player {communicator.rank} fortune: "
    fortune = secret_input(communicator=communicator, src=rank, prompt=prompt)
    fortune_share = protocol.share(src=rank, secret=fortune, shape=())
    less_share = protocol.less(fortune_share, winning_share)
    less = protocol.reveal(less_share, encoding=Boolean())
    if not less:
      winner = rank
      winning_share = fortune_share

    print(f"Winner: player {winner}")

Protocol Suites



hostA $ cicada start --rank 0 millionaires.py

Player 0 fortune: 1230000
INFO:root:Winner: player 1

hostB $ cicada start --rank 1 millionaires.py

Player 1 fortune: 4560000
INFO:root:Winner: player 1

hostC $ cicada start --rank 2 millionaires.py

Player 2 fortune: 3400000
INFO:root:Winner: player 1



Fault Tolerance

Cicada is the only MPC library we’re aware of with support for fault tolerance and recovery!

All communication patterns have explicit, finite timeouts ...

… so failures cannot go unnoticed.

Communicators raise exceptions when failures occur …

… this is the part where other MPC tools just die.







MPC Through 100 Players!

May 20, 2024 27

application-specific failure recovery. To facilitate the latter,
Cicada implements a subset of a proposed extension to the
MPI standard known as User Level Failure Mitigation [6].
With this API, communicators can be revoked, preventing
them from being used by any player, and allowing one player
to signal the others when a failure has occurred. Typically,
revoking a communicator would begin a failure-recovery
phase where current work is checkpointed and attempts are
made to re-organize the computation to continue using fewer
players. This can be accomplished by shrinking a
communicator, which returns a new communicator
containing only the players that are still responding. Since
communicator membership is static by definition, this allows
the remaining players to switch to a new communicator with
fewer members, and continue the computation.
Note that – because there are many possible data recovery
strategies – Cicada does not try to dictate how the reduced set
of players should continue the computation, leaving the
choice of strategy open for ongoing research and
development. Recovery could range from incredibly simple
to incredibly complex - from simply using Cicada’s builtin
Shamir sharing with a low threshold for secret recovery, to
complex schemes that perform redundant computation with
subsets of players, and anywhere in-between.

7.6 Software Quality

In further contrast with other MPC tools, Cicada implements
industry best practices for software quality, including
thorough documentation at
https://cicada-mpc.readthedocs.io, code,
issue-tracker, and discussions hosted at
https://github.com/cicada-mpc/cicada-mpc, and
extensive regression testing with continuous integration and
code coverage greater than 95%.

8 Experiments

We evaluate our techniques in several phases. First, we
reproduce the linear regression results from ABY3 and
compare the timing of our computations to those of ABY3,
using the synthetic datasets from [21]. In appendix 10, we
evaluate the solution quality of our linear regression results
on the MNIST dataset, using separate processes on a single
computer. Finally, in the same appendix we evaluate our
techniques in the environment for which they were designed:
a distributed network of low-power devices, with one player
running on each device.
The implementations of our gradient descent algorithms will
eventually appear as examples in the open-source Cicada
repository.

8.1 Timing comparisons with ABY3

We are grateful to the ABY3 authors for providing us with
their source code. ABY3 is written in C++ and runs in a
single process with one thread per player. Its running time
and limitations on player counts representative of other
methods surveyed in [30] such as [9, 14, 26] (2pc), [25



Conclusions,    HPC Community Asks

Three years ago, we evaluated ULFM reference implementations in MPICH and 
OpenMPI.  We identified problems such as:
• Communicator revocation wasn’t detected by all ranks, depending on which 

ranks initiated the revocation.
• Some collective operations did not raise timeout errors even when some 

ranks were dead.
• Because ULFM hasn’t been adopted by MPI, the Python mpi4py bindings 

don’t support ULFM, and working with patched bindings severely limits our 
ability to distribute our software.

May 20, 2024 28

“WHY DIDN’T WE USE MPI and USER-LEVEL FAULT MITIGATION (ULFM)?”



Questions?

jberry@sandia.gov


